MOTION

1. What is Physical quantity?

Any quantities that can be measured with an instrument are called Physical quantity.
2. What is Scalar quantity?

Quantity which has only magnitude and no direction are called Scalar quantity.
3. What is Vector quantity? Give examples?

Quantity that has both magnitude and direction are called Vector quantity. Example: Displacement, Force
4. Differentiate between Distance \& Displacement?

DISTANCE	DISPLACEMENT
1) It is the actual path travelled by the object. 1) It is the shortest distance between actual point and final point. 2) It is always Positive. 2) It is the zero Positive nor negative. It is a Scalar Quantity. 3) It is the Vector quantity. 	

5. Define Motion.

When the position of an object continuously changes with respect to time the body is set to be in motion.
6. Define Straight line motion.

The motion of an object along a straight line is known as Straight line motion or dimensional motion.
7. Differentiate between Uniform and Non-Uniform motion?

Uniform Motion	Non-Uniform Motion
When object cover actual distance in	When object cover unequal distance
equal travel or time. It is said to be	in equal time it is said to be in
Uniform motion.	Non-Uniform motion.
Example : Motion of hands	Example : Car moving on a crowded street

8. What is Speed?

Speed is the distance travelled by the object per unit Time.
Speed $=\frac{\text { Distance }}{\text { Time }} \quad$ Its SI Unit is $\quad \frac{\text { Metre }}{\text { Second }}$
9. What is average Speed?

Average speed of an object is obtained by dividing total distance travelled by total time taken.

Average Speed $=\frac{\text { Total Distance Travelled }}{\text { Total Time Taken }}$
10. What is Average Velocity?

It is an object moving along a straight line with variable speed.
If the velocity of the object is changing at a uniform rate
Average Velocity = Initial Velocity + Final Velocity
11. What is Acceleration?

Acceleration is a major change in Velocity of object per unit time.
Velocity changes from initial Value \underline{U} in Time \underline{T}. The acceleration = $\mathbf{A}=\underline{\mathrm{V}} \mathbf{- \mathrm { U }}$
The SA Unit of Acceleration is Metre
12. What is Positive and Negative acceleration?

The object increases with time then its acceleration is said to be positive. If the Velocity of object decreases with time then its acceleration is said to be Negative. Negative acceleration is also called acceleration or retardation. The direction of positive acceleration is in the direction of motion and direction of acceleration is positive to direction of motion.

13. What is Uniform and Non-Uniform acceleration?

If an object travels in a straight line and its velocity increases or decreases of time, the acceleration of the object said to be in uniform acceleration. Example: Freely falling body

If the velocity of an object changes unequally in equal intervals of time then its acceleration is said to be Non-Uniform motion.

Example: Car moving in heavy traffic.
14. A farmer moves along a boundary of a square field of side 10 m in 40 s . What will be the magnitude of displacement of the farmer at the end of 2minutes $\mathbf{2 0}$ seconds from his initial position?

In 40s distance covered 40m. In 1minute distance covered 1m
2 minutes 20 second $=2 \times 60+20=140 s$
\therefore In 140 sec distance covered $=140 \mathrm{sec} \quad 40 \mathrm{~m}=1$ Round
$40 \mathrm{~m}=140 / 40=3.5$ rounds
\therefore Displacement $=A B=\sqrt{10^{2}+10^{2}}=\sqrt{200}=10 \sqrt{2}$
15. A Bus decreases its speed from 80 km to 60 km in 5 second, find the acceleration of the bus?
$\frac{1 \mathrm{~km}}{\mathrm{hr}=1}=\frac{1 \times 1000}{\times 60 \times 60}=\frac{109 \mathrm{~d}}{60 \times 6 \emptyset}=\frac{10}{34}=\frac{5 \mathrm{~m} / \mathrm{s}}{8}$
$\mathrm{U}=80 \mathrm{Km} / \mathrm{Hr}=8 \mathrm{Q} \times 5=\underline{200 \mathrm{~m} / \mathrm{s}}$

30
$\mathrm{U}=60 \mathrm{~km} / \mathrm{hr}=60 \times 9=150 \mathrm{~m} / \mathrm{s}$
189
T = 5 Second
$\mathrm{A}=\mathrm{V}-\mathrm{U}$
T
$=150-200=-50=50 / 5$
$\begin{array}{llll}9 & 9 & 9 & 9\end{array}$
5
5
$=-50 \times 1$

