Class9notesandprojects.weebly.com

CH-2 Polynomial

Question: 1. Use suitable identities to find the following products:

(i) (x + 4) (x + 10)Solution:- (x+4)(x+10) $= x^{2}+10x+4x+4 \times 10$ $= x^{2}+14x+40$ (ii) (x + 8) (x - 10)Solution: $x^{2}-10x+8x-80$ $= x^{2}-2x-80$ (iii) (3x + 4) (3x - 5)Solution: $9x^{2}-15x+12x-20$ $= 9x^{2}-3x-20$ (iv) $(y^{2} + \frac{3}{2}) (y^{2} - \frac{3}{2})$ Solution: $(a+b)(a-b) = a^{2}-b^{2}$ Suppose, $y^{2}=a$ and $\frac{3}{2}=b$ Hence, the given equation can be written as follows: $y^{4} - \frac{9}{4}$

(v) (3-2x) (3+2x)

Solution: This can be solved as the earlier question

 $(3-2x)(3+2x) = 9-4x^2$

2. Evaluate the following products without multiplying directly:

(i) 103 × 107

Solution: 103 × 107

=(100+3)(100+7)

- $= 1002+7 \times 100+3 \times 100+7 \times 3$
- = 10000+700+300+21
- = 11021

(ii) 95 × 96

Solution: 95 × 96

- = 1002-400-500+20
- = 10000-900+20
- = 9120

(iii) 104 × 96

Solution: 104 × 96

- =(100+4)(100-4)
- = 1002-42
- = 10000-16

= 9984

3. Factorise the following using appropriate identities:

(i) $9x^2 + 6xy + y^2$

Solution: $9x^2 + 6xy + y^2$

$$= 3x(3x+y)+y(3x+y)$$

=(3x+y)(3x+y)

$$=(3x+y)^2$$

Alternate way of solving this problem:

Equation 1 gives a hint that this can be solved through following formula:

$$(a+b)^2 = a^2+2ab+b^2$$

(ii) $4y^2 - 4y + 1$

Solution: $2^2y^2 - 2x 2y + 1^2$

 $=(2y-1)^{2}$

(iii)
$$x^{2-}\frac{y^{2}}{100}$$

Solution: As you know $a^2-b^2 = (a+b)(a-b)$ So, $x^2 - \frac{y^2}{10^2}$ $= (x + \frac{y}{10}) (x - \frac{y}{10})$

4. Expand each of the following, using suitable identities:

(i) $(x + 2y + 4z)^2$

Solution: As you know $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$

Using this formula in the given equation,

 $(x+2y+4z)^{2}$ = $x^{2}+4y^{2}+16z^{2}+4xy+16yz+8zx$

(ii)
$$(2x - y + z)^2$$

Solution: $(x-y+z)^2 = x^2+y^2+z^2-2xy-2yz+2zx$
So, $(2x-y+z)^2$
 $= 4x^2+y^2+z^2-4xy-2yz+4zx$
(iii) $(-2x + 3y + 2z)^2$
Solution: $(-2x+3y+2z)^2$
 $= 4x^2+9y^2+4z^2-12xy+12yz-8zx$
(iv) $(3a - 7b - c)^2$
Solution: $(x-y-z)^2 = x^2+y^2+z^2-2xy-2yz-2zx$
Hence, $(3a-7b-c)^2$
 $= 9a^2+49b^2+c^2-42ab-14bc-6ac$

5. Factorise:

(i) $4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$

Solution: It is clear that this can be solved using

 $(x+y-z)^{2} = x^{2}+y^{2}+z^{2}+2xy-2yz-2zx$ Hence, $4x^{2}+9y^{2}+16z^{2}+12xy-24yz-2zx$ = $(2x+3y-4z)^{2}$ (ii) $2x^{2} + y^{2} + 8z^{2} - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz$ Solution: using $(x+y+z)^{2}$

The value of x= $\sqrt{2}$ x, y=y and z= $2\sqrt{2}$ z Hence, given equation can be written as follows: $(\sqrt{2}x+y+2\sqrt{2}z)^2$

6. Write the following cubes in expanded form:

(i) $(2x + 1)^3$

Solution: As you know, $(x + y)^{3} = x^{3} + y^{3} + 3xy(x + y)$

Hence, $(2x+1)^3$

$$= 8x^{3} + 1 + 6xy(2x+1)$$

(ii) $(2a - 3b)^3$

Solution: As you know, $(x - y)^3 = x^3 - y^3 - 3xy(x - y)$

Hence, $(2a-3b)^3 = 8a^3-27y^3-18ab(2a-3b)$

(iii) $(\frac{3}{2}x+1)^{3}$

Solution: Using the formula which was used in question 6-(i) We get, $\frac{27}{8}x^3 + 1 + \frac{9}{2}xy(\frac{3}{2}x + y)$

7. Evaluate the following:

(i) 99³

Solution: 99^3 can be written as $(100-1)^3$

 $(100-1)^3$ can be solved through using $(x-y)^3$

Now, $(100-1)^3 = 100^3 - 1^3 - 300(100-1)$

- = 1000000-1-300(99)
- = 1000000-1-29700
- = 970299

(ii) 102³

Solution: 102^3 can be written as $(100+2)^3$ and can be solved using $(x+y)^3$

Hence, $(100+2)^3$

$$= 100^3 + 2^3 + 600(100 + 2)$$

- = 1000000+8+61200
- = 1061208

8. Factorise each of the following:

(i)
$$8a^3 + b^3 + 12a^2b + 6ab^2$$

Solution:

$$(ii) 8a^3 - b^3 - 12a^2b + 6ab^2$$

Solution:

```
8a^{3}-b^{3}-12a^{2}b+6ab^{2}
=8a^{3}-b^{3}-6ab(a+b)
=(2a-b)^{3}
(iii) 27 - 125a^{3} - 135a + 225a^{2}
Solution: 27 - 125a^{3} - 135a + 225a^{2}
= 3^{3}-5^{3}a^{3}-3^{3}5a+3^{2}5^{2}a^{2}
= 3^{3}-5^{3}a^{3}-3^{2}5a(3-5a)
if x=3 and y=5a
hence, (3-5a)^{3}= 3^{3}-5^{3}a^{3}-3^{2}5a(3-5a)
```

 $(iv) 64a^3 - 27b^3 - 144a^2b + 108ab^2$

Solution: $64a^3 - 27b^3 - 144a^2b + 108ab^2$ = $4^3a^3 - 3^3b^3 - 3 \times 4a3b(4a - 3b)$ = $(4a - 3b)^3$

Note: Try to identify the values of x and y by carefully analysing the first two terms of the equations. This will give you exact clue to the final answer.

(v)
$$27p^{3} - \frac{1}{216} - \frac{9}{2}p^{2} + \frac{1}{4}p^{3}$$

Solution: 27p³ can be written as 3³p³

Hence,
$$x = 3p$$

And $\frac{1}{216}$ can be written as $\frac{1^3}{6^3}$ Hence, $y = \frac{1}{6}$ So, the required answer will be $(3p - \frac{1}{6})^3$

Note: This step is to help you develop the problem solving skills. In exam situation you have to write all steps to get full marks.

9. Verify :

(i) $x^3 + y^3 = (x + y) (x^2 - xy + y^2)$ Solution: RHS $(x+y)(x^2-xy+y^2)$ $= x^3-x^2y+xy^2+x^2y-xy^2+y^3$ $=x^3+y^3$ LHS proved (ii) $x^3 - y^3 = (x - y) (x^2 + xy + y^2)$ Solution: RHS $(x - y) (x^2 + xy + y^2)$ $= x^3+x^2y+xy^2-x^2y-xy^2-y^3$ $= x^3-y^3$ LHS proved

10. Factorise each of the following:

(i) $27y^3 + 125z^3$

Solution: From the previous question you can recall

 $x^{3}+y^{3}=(x+y)(x^{2}+xy+y^{2})$

Hence, $3^3y^3+5^3z^3$ can be written as follows: (27= 3^3 and 125= 5^3)

 $(3y+5z)(9y^2+15yz+25z^2)$

(ii) $64m^3 - 343n^3$

Solution: As you know, $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$

Hence, 4^3 m³- 7^3 n³ can be written as follows: (64= 4^3 and 343= 7^3)

4m-7n)($16n^2+28mn+49n^2$)

11. Factorise : $27x^3 + y^3 + z^3 - 9xyz$

Solution: As you know,

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$$

Hence, $27x^3 + y^3 + z^3 - 9xyz$

$$= (3x+y+z) (9x^{2}+y^{2}+z^{2}-3xy-yz-3zx)$$

12. Verify that

 $x^{3} + y^{3} + z^{3} - 3xyz = \frac{1}{2}(x+y+z) \left[(x-y)^{2} + (y-z)^{2} + (z-x)^{2} \right]$ Solution: RHS $\frac{1}{2}(x+y+z) \left[(x-y)^{2} + (y-z)^{2} + (z-x)^{2} \right]$ $= \frac{1}{2}(x+y+z)(x^{2}+y^{2}-2xy+y^{2}+z^{2}-2yz+z^{2}+x^{2}-2zx)$ $= \frac{1}{2}(x+y+z)(2x^{2}+2y^{2}+2z^{2}-2xy-2yz-2zx)$ $= (x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)$

Now, the RHS satisfies the condition as per following identity: $x^3 + y^3 + z^3 - 3xyz = (x + y + z) (x^2 + y^2 + z^2 - xy - yz - zx)$ 13. If x + y + z = 0, show that $x^3 + y^3 + z^3 = 3xyz$.

Solution: As you know,

 $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$

Now, as per question x+y+z=0,

Putting value of x+y+z=0 in the equation we get

$$x^{3} + y^{3} + z^{3} - 3xyz = 0 (x^{2} + y^{2} + z^{2} - xy - yz - zx)$$

Or, $x^3 + y^3 + z^3 - 3xyz = 0$

Or, $x^{3} + y^{3} + z^{3} = 3xyz$ proved

14. Without actually calculating the cubes, find the value of each of the following:

(i) $(-12)^3 + (7)^3 + (5)^3$

Solution: As you know,

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z) (x^{2} + y^{2} + z^{2} - xy - yz - zx)$$

Or, $x^{3} + y^{3} + z^{3} = (x + y + z) (x^{2} + y^{2} + z^{2} - xy - yz - zx) + 3xyz$
Hence, $(-12)^{3} + (7)^{3} + (5)^{3}$
= $(-12+7+5) [-12^{2}+7^{2}+5^{2}-(-12 \times 7)-(7 \times 5)-(-12 \times 5)] + 3(-12 \times 7 \times 5)$
= $0 - 12^{2} + 7^{2} + 5^{2} [-(-12 \times 7)-(7 \times 5)-(-12 \times 5)] - 1260$
= $0 - 1260 = -1260$ answer

(ii) $(28)^3 + (-15)^3 + (-13)^3$

Solution: This question can be solved in the same way as above.

Here, value of (x+y+z) = (28-15-13) = 0

Hence, you need to calculate the value of 3xyz

3 x 28 x -15 x -13 = 16380

Hence, the required answer = -16380