Class9notesandprojects.weebly.com

CH-2 Polynomial

Question: 1. Use suitable identities to find the following products:
(i) $(x+4)(x+10)$

Solution:- $(x+4)(x+10)$
$=x^{2}+10 x+4 x+4 \times 10$
$=x^{2}+14 x+40$
(ii) $(x+8)(x-10)$

Solution: $x^{2}-10 x+8 x-80$
$=x^{2}-2 x-80$
(iii) $(3 x+4)(3 x-5)$

Solution: $9 x^{2}-15 x+12 x-20$
$=9 x^{2}-3 x-20$
(iv) $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

Solution: $(a+b)(a-b)=a^{2}-b^{2}$
Suppose, $y^{2}=a$ and $\frac{3}{2}=b$
Hence, the given equation can be written as follows:

$$
y^{4}-\frac{9}{4}
$$

(v) $(3-2 x)(3+2 x)$

Solution: This can be solved as the earlier question
$(3-2 x)(3+2 x)=9-4 x^{2}$
2. Evaluate the following products without multiplying directly:
(i) 103×107

Solution: 103×107
$=(100+3)(100+7)$
$=1002+7 \times 100+3 \times 100+7 \times 3$
$=10000+700+300+21$
$=11021$
(ii) 95×96

Solution: 95×96
$=(100-5)(100-4)$
$=1002-400-500+20$
$=10000-900+20$
$=9120$
(iii) 104×96

Solution: 104×96
$=(100+4)(100-4)$
$=1002-42$
$=10000-16$
= 9984

3. Factorise the following using appropriate identities:

(i) $9 x^{2}+6 x y+y^{2}$

Solution: $9 x^{2}+6 x y+y^{2}$
$=3^{2} x^{2}+3 x y+3 x y+y^{2}$
$=3 x(3 x+y)+y(3 x+y)$
$=(3 x+y)(3 x+y)$
$=(3 x+y)^{2}$
Alternate way of solving this problem:
Equation 1 gives a hint that this can be solved through following formula:
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
(ii) $4 y^{2}-4 y+1$

Solution: $2^{2} y^{2}-2 \times 2 y+1^{2}$
$=(2 y-1)^{2}$
(iii) $\mathrm{x}^{2-} \frac{y^{2}}{100}$

Solution: As you know $a^{2}-b^{2}=(a+b)(a-b)$
So, $x^{2}-\frac{y^{2}}{10^{2}}$
$=\left(x+\frac{y}{10}\right)\left(x-\frac{y}{10}\right)$
4. Expand each of the following, using suitable identities:
(i) $(x+2 y+4 z)^{2}$

Solution: As you know $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Using this formula in the given equation,
$(x+2 y+4 z)^{2}$
$=x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 z x$
(ii) $(2 x-y+z)^{2}$

Solution: $(x-y+z)^{2}=x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 z x$
So, $(2 x-y+z)^{2}$
$=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 z x$
(iii) $(-2 x+3 y+2 z)^{2}$

Solution: $(-2 x+3 y+2 z)^{2}$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 z x$
(iv) $(3 a-7 b-c)^{2}$

Solution: $(x-y-z)^{2}=x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x$
Hence, $(3 a-7 b-c)^{2}$
$=9 a^{2}+49 b^{2}+c^{2}-42 a b-14 b c-6 a c$

5. Factorise:

(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

Solution: It is clear that this can be solved using
$(x+y-z)^{2}=x^{2}+y^{2}+z^{2}+2 x y-2 y z-2 z x$
Hence, $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-2 z x$
$=(2 x+3 y-4 z)^{2}$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

Solution: using $(x+y+z)^{2}$
The value of $x=\sqrt{2} x, y=y$ and $z=2 \sqrt{2} z$
Hence, given equation can be written as follows:
$(\sqrt{2} x+y+2 \sqrt{2} z)^{2}$

6. Write the following cubes in expanded form:

(i) $(2 x+1)^{3}$

Solution: As you know, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
Hence, $(2 x+1)^{3}$
$=8 x^{3}+1+6 x y(2 x+1)$
(ii) $(2 a-3 b)^{3}$

Solution: As you know, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
Hence, $(2 a-3 b)^{3}=8 a^{3}-27 y^{3}-18 a b(2 a-3 b)$
(iii) $\left(\frac{3}{2} x+1\right)^{3}$

Solution: Using the formula which was used in question 6-(i)
We get, $\frac{27}{8} x^{3}+1+\frac{9}{2} x y\left(\frac{3}{2} x+y\right)$
7. Evaluate the following:
(i) 99^{3}

Solution: 99^{3} can be written as $(100-1)^{3}$
$(100-1)^{3}$ can be solved through using $(x-y)^{3}$
Now, $(100-1)^{3}=100^{3}-1^{3}-300(100-1)$
$=1000000-1-300(99)$
$=1000000-1-29700$
= 970299
(ii) 102^{3}

Solution: 102^{3} can be written as $(100+2)^{3}$ and can be solved using $(x+y)^{3}$
Hence, $(100+2)^{3}$
$=100^{3}+2^{3}+600(100+2)$
$=1000000+8+61200$
$=1061208$
8. Factorise each of the following:
(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

Solution:

$=8 a^{3}+b^{3}+6 a b(a+b)$
$=(2 a+b)^{3}$
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$

Solution:

$8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
$=8 a^{3}-b^{3}-6 a b(a+b)$
$=(2 a-b)^{3}$
(iii) $27-125 a^{3}-135 a+225 a^{2}$

Solution: $27-125 a^{3}-135 a+225 a^{2}$
$=3^{3}-5^{3} a^{3}-3^{3} 5 a+3^{2} 5^{2} a^{2}$
$=3^{3}-5^{3} a^{3}-3^{2} 5 a(3-5 a)$
if $x=3$ and $y=5 a$
hence, $(3-5 a)^{3}=3^{3}-5^{3} a^{3}-3^{2} 5 a(3-5 a)$
(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$

Solution: $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
$=4^{3} a^{3}-3^{3} b^{3}-3 \times 4 a 3 b(4 a-3 b)$
$=(4 a-3 b)^{3}$
Note: Try to identify the values of x and y by carefully analysing the first two terms of the equations. This will give you exact clue to the final answer.
(v) $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$

Solution: $27 \mathrm{p}^{3}$ can be written as $3^{3} \mathrm{p}^{3}$
Hence, $x=3 p$
And $\frac{1}{216}$ can be written as $\frac{1^{3}}{6^{3}}$
Hence, $y=\frac{1}{6}$
So, the required answer will be $\left(3 p-\frac{1}{6}\right)^{3}$

Note: This step is to help you develop the problem solving skills. In exam situation you have to write all steps to get full marks.
9. Verify :
(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

Solution: RHS $(x+y)\left(x^{2}-x y+y^{2}\right)$
$=x^{3}-x^{2} y+x y^{2}+x^{2} y-x y^{2}+y^{3}$
$=x^{3}+y^{3}$ LHS proved
(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Solution: RHS $(x-y)\left(x^{2}+x y+y^{2}\right)$
$=x^{3}+x^{2} y+x y^{2}-x^{2} y-x y^{2}-y^{3}$
$=x^{3}-y^{3}$ LHS proved

10. Factorise each of the following:

(i) $\mathbf{2 7} y^{3}+125 z^{3}$

Solution: From the previous question you can recall
$x^{3}+y^{3}=(x+y)\left(x^{2}+x y+y^{2}\right)$
Hence, $3^{3} y^{3}+5^{3} z^{3}$ can be written as follows: $\left(27=3^{3}\right.$ and $\left.125=5^{3}\right)$
$(3 y+5 z)\left(9 y^{2}+15 y z+25 z^{2}\right.$
(ii) $64 m^{3}-343 n^{3}$

Solution: As you know, $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
Hence, $4^{3} \mathrm{~m}^{3}-7^{3} \mathrm{n}^{3}$ can be written as follows: ($64=4^{3}$ and $343=7^{3}$)
$4 m-7 n)\left(16 n^{2}+28 m n+49 n^{2}\right)$
11. Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$

Solution: As you know,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
Hence, $27 x^{3}+y^{3}+z^{3}-9 x y z$
$=(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 z x\right)$
12. Verify that
$x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
Solution: RHS $\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
$=\frac{1}{2}(x+y+z)\left(x^{2}+y^{2}-2 x y+y^{2}+z^{2}-2 y z+z^{2}+x^{2}-2 z x\right)$
$=\frac{1}{2}(x+y+z)\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x\right)$
$=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
Now, the RHS satisfies the condition as per following identity:
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
13. If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$.

Solution: As you know,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
Now, as per question $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$,
Putting value of $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$ in the equation we get
$x^{3}+y^{3}+z^{3}-3 x y z=0\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
Or, $x^{3}+y^{3}+z^{3}-3 x y z=0$
Or, $x^{3}+y^{3}+z^{3}=3 x y z$ proved
14. Without actually calculating the cubes, find the value of each of the following:
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$

Solution: As you know,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
Or, $x^{3}+y^{3}+z^{3}=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)+3 x y z$
Hence, $(-12)^{3}+(7)^{3}+(5)^{3}$
$=(-12+7+5)\left[-12^{2}+7^{2}+5^{2}-(-12 \times 7)-(7 \times 5)-(-12 \times 5)\right]+3(-12 \times 7 \times 5)$
$=0-12^{2}+7^{2}+5^{2}[-(-12 \times 7)-(7 \times 5)-(-12 \times 5)]-1260$
$=0-1260=-1260$ answer
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Solution: This question can be solved in the same way as above.
Here, value of $(x+y+z)=(28-15-13)=0$
Hence, you need to calculate the value of 3xyz
$3 \times 28 x-15 x-13=16380$
Hence, the required answer $=-16380$

