CH - 12 HERON'S FORMULA

Q.1: A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' a '. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?
Solution: \quad Side of traffic signal board $=a$
Perimeter of traffic signal board $=3 \times a$

$$
2 s=3 a \Rightarrow s=\frac{3}{2} a
$$

By Heron's formula,

$$
\begin{aligned}
& \text { Area of triangle }=\sqrt{s(s-a)(s-b)(s-c)} \\
& \begin{aligned}
\text { Area of given triangle } & =\sqrt{\frac{3}{2} a\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)} \\
& =\sqrt{\left(\frac{3}{2} a\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)} \\
& =\frac{\sqrt{3}}{4} a^{2}
\end{aligned}
\end{aligned}
$$

Perimeter of traffic signal board $=180 \mathrm{~cm}$

$$
(a)=\left(\frac{180}{3}\right) \mathrm{cm}=60 \mathrm{~cm}
$$

Side of traffic signal board

Using equation (1), area of traffic signal board

$$
=\frac{\sqrt{3}}{4}(60 \mathrm{~cm})^{2}
$$

$$
=\left(\frac{3600}{4} \sqrt{3}\right) \mathrm{cm}^{2}=900 \sqrt{3} \mathrm{~cm}^{2}
$$

Q.2: The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m (see the given figure). The advertisements yield an earning of Rs 5000 per m^{2} per year. A company hired one of its walls for 3 months. How much rent did it pay?

Solution: The sides of the triangle (i.e., a, b, c) are of $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m respectively.

Perimeter of triangle $=(122+22+120) \mathrm{m}$
$2 s=264 \mathrm{~m}$
$s=132 \mathrm{~m}$
By Heron's formula,

$$
\begin{aligned}
& \text { Area of triangle }=\sqrt{s(s-a)(s-b)(s-c)} \\
& \begin{aligned}
\text { Area of given triangle } & =[\sqrt{132(132-122)(132-22)(132-120)}] \mathrm{m}^{2} \\
& =[\sqrt{132(10)(110)(12)}] \mathrm{m}^{2}=1320 \mathrm{~m}^{2}
\end{aligned}
\end{aligned}
$$

Rent of $1 \mathrm{~m}^{2}$ area per year $=$ Rs 5000
Rent of $1 \mathrm{~m}^{2}$ area per month $=\operatorname{Rs} \frac{5000}{12}$
Rent of $1320 \mathrm{~m}^{2}$ area for 3 months $=\operatorname{Rs}\left(\frac{5000}{12} \times 3 \times 1320\right)$
$=$ Rs $(5000 \times 330)=$ Rs 1650000
Therefore, the company had to pay Rs 1650000.
Q.3: There is a slide in the park. One of its side walls has been painted in the same colour with a message "KEEP THE PARK GREEN AND CLEAN" (see the given figure). If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$, and 6 m , find the area painted in colour.

Solution: It can be observed that the area to be painted in colour is a triangle, having its sides as $11 \mathrm{~m}, 6 \mathrm{~m}$, and 15 m .

Perimeter of such a triangle $=(11+6+15) \mathrm{m}$
$2 s=32 \mathrm{~m}$
$s=16 \mathrm{~m}$
By Heron's formula,

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{16(16-11)(16-6)(16-15)}] \mathrm{m}^{2} \\
& =(\sqrt{16 \times 5 \times 10 \times 1}) \mathrm{m}^{2} \\
& =20 \sqrt{2} \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, the area painted in colour is . $20 \sqrt{2} \mathrm{~m}^{2}$
Q.4: Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Solution: Let the third side of the triangle be x.
Perimeter of the given triangle $=42 \mathrm{~cm}$
$18 \mathrm{~cm}+10 \mathrm{~cm}+x=42$
$x=14 \mathrm{~cm}$
$s=\frac{\text { Perimeter }}{2}=\frac{42 \mathrm{~cm}}{2}=21 \mathrm{~cm}$
By Heron's formula,

$$
\begin{aligned}
& \text { Area of a triangle }=\sqrt{s(s-a)(s-b)(s-c)} \\
& \begin{aligned}
\text { Area of the given triangle } & =(\sqrt{21(21-18)(21-10)(21-14)}) \mathrm{cm}^{2} \\
& =(\sqrt{21(3)(11)(7)}) \mathrm{cm}^{2} \\
& =21 \sqrt{11} \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Q.5: Sides of a triangle are in the ratio of 12: 17: 25 and its perimeter is 540 cm . Find its area?

Solution: Let the common ratio between the sides of the given triangle be x. Therefore, the side of the triangle will be $12 x, 17 x$, and $25 x$.

Perimeter of this triangle $=540 \mathrm{~cm}$
$12 x+17 x+25 x=540 \mathrm{~cm}$
$54 x=540 \mathrm{~cm}$
$x=10 \mathrm{~cm}$
Sides of the triangle will be $120 \mathrm{~cm}, 170 \mathrm{~cm}$, and 250 cm .
$s=\frac{\text { Perimeter of triangle }}{2}=\frac{540 \mathrm{~cm}}{2}=270 \mathrm{~cm}$
By Heron's formula,

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{270(270-120)(270-170)(270-250)}] \mathrm{cm}^{2} \\
& =[\sqrt{270 \times 150 \times 100 \times 20}] \mathrm{cm}^{2} \\
& =9000 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of this triangle is $9000 \mathrm{~cm}^{2}$.
Q.6: An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of the triangle.
Solution: Let the third side of this triangle be x.
Perimeter of triangle $=30 \mathrm{~cm}$
$12 \mathrm{~cm}+12 \mathrm{~cm}+x=30 \mathrm{~cm}$
$x=6 \mathrm{~cm}$
$s=\frac{\text { Perimeter of triangle }}{2}=\frac{30 \mathrm{~cm}}{2}=15 \mathrm{~cm}$
By Heron's formula,

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{15(15-12)(15-12)(15-6)}] \mathrm{cm}^{2} \\
& =[\sqrt{15(3)(3)(9)}] \mathrm{cm}^{2} \\
& =9 \sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

